JavaScript is currently disabled.Please enable it for a better experience of Jumi.

Aalto-yliopiston tutkijat ovat onnistuneet rakentamaan optisen laskimen hiuksen sadasosaakin ohuemmista nanolangoista. Sähkön sijaan se suorittaa laskutehtävät valon avulla, ensimmäistä kertaa maailmassa. Innovaatio avaa tietä kohti optisia tietokoneita.

Puhelimia, tietokoneita ja älytelevisioita pyörittävä teknologia on kuitenkin pitkään lähestynyt suorituskykynsä äärirajoja, ja siksi tutkijat ympäri maailmaa kehittävät uuden sukupolven laskentatapoja.

Tuoreessa Science Advances -tiedejulkaisussa Aalto-yliopiston tutkijat esittelevät uudenlaisen, täysin valon avulla toteutetun loogisen piirin. Tutkijoiden keksintö muodostuu poikittain olevista nanokokoisista langoista, ja se pystyy valon avulla suoriutumaan loogisista tehtävistä, kuten yhteen- ja vähennyslaskuista. Keksintö on merkittävä askel kohti täysin optisen laskennan toteutumista.

- Teimme laskutoimituksia binääriluvuilla ja osoitimme, että nanorakenne suoriutuu niistä aivan kuten yksinkertainen taskulaskinkin. Erona on vain se, että sähkön sijaan laskuoperaatiot toteutetaan valon avulla, selittää projektia vetänyt, Aallossa tutkijatohtorina työskennellyt Henri Jussila.

Tiimi käytti nanorakenteen valmistukseen kahdesta eri materiaalista, indium-fosfidista ja alumiini-gallium-arsenidista, tehtyjä nanolankoja. Lankojen pituus oli 10 mikrometriä ja paksuus noin 100 nanometriä eli viidessadasosa hiuksen halkaisijasta. Ainutlaatuisen yksiulotteisen rakenteensa ansiosta nanolangat toimivat kuten nanokokoiset valoantennit. Rakenteen toimintaperiaatetta voi verrata vanhoihin radiovastaanottimiin, jotka vastaanottivat signaaleja parhaiten antennin ollessa optimaalisesti suunnattuna.

Rakenteen kokoamisessa tutkijat hyödynsivät hiusten kampaamista muistuttavaa tekniikkaa, jolla nanolangat saatiin järjestettyä tarkasti haluttuun suuntaan.

- Kampausmetodia toistamalla pystyimme rakentamaan laitteen, jossa kaksi erilaista nanolankaa ovat kohtisuorassa toisiinsa nähden, sanoo fotoniikan tutkimusryhmää johtava professori Zhipei Sun.

- Yksiulotteisuus ja nanolankojen kampauksen mahdollistama poikkipuurakenne ovat avainasemassa: niiden ansiosta tulevan valon tila vaikuttaa siihen, onko se vuorovaikutuksessa indium-fosfidin vai alumiini-gallium-arsenidin kanssa, lisää tutkijatohtori He Yang.

Se, reagoiko indium-fosfidi- vai alumiini-gallium-arsenidi-nanolanka rakenteeseen osuvan valon kanssa, riippuu valon tilasta eli polarisaatiosta ja aallonpituudesta. Koska eri materiaalit reagoivat valoon eri tavoilla, uloslähtevän valon tilaa eli loogisen piirin ulostuloa pystytään vaihtamaan rakenteeseen osuvan valon polarisaatiotilaa ja aallonpituutta muuttamalla.

 
 

LTE-mikroverkot tuovat yhteydet jopa kaivokseen

Erityisesti teollisuuden tarpeisiin sopivat LTE-mikroverkot ovat vähitellen siirtymässä pilottikohteista tuotantokäyttöön. Teknologia tarjoaa teollisuudelle uudenlaisia mahdollisuuksia, hyvää käytettävyyttä ja vahvaa tietoturvaa.

Lue lisää...

Koko järjestelmää voidaan simuloida kerralla

Simulointi on perusedellytys monimutkaisen järjestelmän onnistuneelle suunnittelulle, kehittämiselle ja testaamiselle. Yhdistämällä Wind Riverin Simicsin kaltainen tietokoneen simulointiohjelmisto fyysisen järjestelmän ja ympäristön simulaatioon voidaan koko järjestelmän kattavia testejä ajaa täysin automaattisesti niin usein kuin halutaan.

Lue lisää...
 
ETN_fi Suomalainen kiihtyvyysanturi elää ja voi hyvin. Murata Electronics laajentaa Vantaalla: jopa 200 uutta työpaikkaa.… https://t.co/K9xs1ZcMQG
21hreplyretweetfavorite
ETN_fi Thaimaan luolapelastusoperaatiossa käytettiin MaxMesh-verkkotekniikkaa, joka perustui Analog Devicesin AD9364-piire… https://t.co/eVFbYcblRg
ETN_fi Älä käytä verkkopankkia julkisilla laitteilla tai wifillä! https://t.co/oghm4QvzPj
ETN_fi Tämän takia Linux ei valtaa työpöytiä https://t.co/GmLMkZ7C1q
ETN_fi The 1st ever ETNdigi is out! Ensimmäinen ETNdigi ilmestyi – lue vankka paketti IoT-tekniikasta https://t.co/AeNPCRgufC
 
 

ny template