JavaScript is currently disabled.Please enable it for a better experience of Jumi.

Nanomittakaavan valonlähteet ja nanoantennit ovat jo löytäneet laajan valikoiman sovelluksia useilla aloilla, kuten erittäin kompakteina pikseleinä, optisessa havaitsemisessa tai televiestinnässä. Pietarilaisen ITMO-yliopiston tiedemiehet ovat nyt kehittäneet uuden tyyppisiä nanohiukkasiin perustuvia valonlähteitä, jotka perustuvat halidi-perovskiitteihin. Nämä alle aallonpituuden nanopartikkelit toimivat sekä emittereinä että nanoantenneina ja pystyvät vahvistamaan valon emissiota luontaisesti ilman lisärakenteita.

Perovskiitin etuna on lisäksi se, että se mahdollistaa emissiospektrin virittämisen koko näkyvällä alueella muuttamalla materiaalin koostumusta. Tämä tekee uusista nanopartikkeleista lupaavan alustan erilaisille kompakteille optoelektronisille laitteille, kuten optisiin siruihin, valoa emittoiviin diodeihin tai antureihin.

Jyväskylän yliopiston tutkijat ovat puolestaan kehittäneet yhdessä Kalifornian Caltecin ja tanskalaisen Aarhusin yliopiston kanssa uuden valmistustekniikan pienille metallisille nanorakenteille. Näiden rakenteiden kuten nanoantennien mitat ovat noin kymmenen nanometriä ja mahdollistavat siten optisten ominaisuuksien muokkaamisen näkyvän valon aallonpituusalueella.

Jyväskylän yliopistossa myös Boxuan Shen tutki väitöskirjatyössään, miten DNA-molekyylin avulla voidaan rakentaa nanokokoluokan sähköisiä ja optisia laitteita kuten rusetin muotoisia optisia antenneja ja yhden elektronin transistoreita.

DNA-pohjainen nanoteknologia on kasvava ala, jossa DNA-molekyylin itsejärjestäytyvyyttä hyödyntämällä voidaan muodostaa erimuotoisia ja tarkasti suunniteltavia nanorakenteita. Shenin väitöstutkimuksessa valmistettiin mm. safiiripintoja, jotka oli kauttaaltaan peitetty kultaisilla nanoruseteilla, joita voidaan soveltaa esimerkiksi molekyylien tunnistuksessa.

- Optisten sovellusten lisäksi DNA tarjoaa myös uusia mahdollisuuksia sähköisten virtapiirien valmistuksessa, toteaa Shen yliopiston tiedotteessa.

Shen kollegoineen pyrki muodostamaan yhden elektronin transistoreita yhdistämällä kolme kultananohiukkasta yhteen DNA-rakenteeseen. Tällaisia kultananohiukkasten ja DNA-rakenteen muodostamia kokonaisuuksia vangittiin sähkökentillä nanojohtimien väliin, jolloin ne muodostivat kokonaisen virtapiirin. Väitöskirjatyössä osoitettiin, että vangitut rakenteet toimivat yhden elektronin transistoreina huoneenlämpötilassa.

Veijo Hänninen
Nanobittejä 20.3.2018

 
 

LTE-mikroverkot tuovat yhteydet jopa kaivokseen

Erityisesti teollisuuden tarpeisiin sopivat LTE-mikroverkot ovat vähitellen siirtymässä pilottikohteista tuotantokäyttöön. Teknologia tarjoaa teollisuudelle uudenlaisia mahdollisuuksia, hyvää käytettävyyttä ja vahvaa tietoturvaa.

Lue lisää...

Moniydinsuorittimet tulevat lentokoneisiin

Ilmailun turvakriittisissä ohjausjärjestelmissä on aiemmin pitäydytty perinteisiin yhden ytimen prosessoriratkaisuihin. Nyt ilmailualallakin aletaan yleistä kehitystä seuraten siirtyä moniytimisiin suoritinarkkitehtuureihin.

Lue lisää...
 
ETN_fi Älä käytä verkkopankkia julkisilla laitteilla tai wifillä! https://t.co/oghm4QvzPj
ETN_fi Tämän takia Linux ei valtaa työpöytiä https://t.co/GmLMkZ7C1q
ETN_fi The 1st ever ETNdigi is out! Ensimmäinen ETNdigi ilmestyi – lue vankka paketti IoT-tekniikasta https://t.co/AeNPCRgufC
ETN_fi What is Mindsphere IoT by Siemens?. Ilmari Veijola explains at ECF2018. https://t.co/PczsxwpCO4 @SiemensSuomi @ETN_fi
ETN_fi You dont need code to create an Android app. It can be done on Simulink and MATLAB models. See Antti Löytynoja at E… https://t.co/VJzXEfJoOM
 
 

ny template