PEACE OF MIND IN A DANGEROUS WORLD

Tuesday, September 6, 2022 10:00 EET

Post-quantum cryptography: Current status and future consequences Embedded Conference Finland Helsinki, Finland

Speaker **Kimmo Järvinen** CTO & Co-founder, Xiphera

Agenda

I. Brief introduction to cryptography
II. The quantum threat and PQC
III. The future PQC standards
IV. What are the effects of PQC in practice?

Cryptography

Cryptography vs. cryptanalysis

Foundation of computer & communication security

Security is based on the secrecy of keys

The quantum threat

- Shor's algorithm on a large-scale quantum computer
 - Discrete logarithm will be "easy" to solve
 - ➡ ECC broken
 - Factoring will be "easy" to solve
 - ➡ RSA broken
- Shor's algorithm does not apply to symmetric cryptography
 - **Grover's algorithm** does, but doubling the key size is enough (256 bits instead of 128 bits)

Peter Shor speaking after receiving the 2017 Dirac Medal from the ICTP. Author: International Centre for Theoretical Physics Source: https://www.youtube.com/watch?v=J7HeDX_7Heg&t=7075

The imminent quantum threat

"Record today, break tomorrow."

Post-quantum cryptography

- Post-Quantum Cryptography (PQC) refers to asymmetric cryptography that *cannot be broken with quantum computers*
 - Based on mathematical problems that are not affected by Shor
 - Algorithms running on traditional computers
 (≠ quantum cryptography)
- Active area of research in the cryptography community since 2000s

NIST PQC competition

NIST PQC competition

NIST selections

KEM stats

Algorithm	Status	Security	Private key (B)	Public key (B)	Ciphertext (B)
ECC (ECDH)	Pre-Quantum	~128	32	32	32
		~256	64	64	64
Kyber	Winner	~128	1632	800	768
		~256	3168	1568	1568
HQC	Round 4	~128	40	2249	4481
		~256	40	7245	14469
BIKE	Round 4	~128	2244	12323	12579
		~256	4640	40973	41229
SIKE	Round 4 (broken)	~128	374	330	346
		~256	644	564	596
Classic McEliece	Round 4	~128	6492	261120	128
		~256	13932	10449922	240

KEM stats

Algorithm	Status	Security	Private key (B)	Public key Ciph (B)	ertext (B)
ECC (ECDH)	Pre-Quantum	~128	32	Significantly	32
		~256	64	larger keys &	64
Kyber	Winner	~128	1632	ciphertexts	768
		~256	3168	1568	1568
HQC	Round 4	~128	40	2249	4481
		~256	40	7245	14469
BIKE Latend stay sir	ncies will imilar or become ilv faster	~128	2244	Larger ¹²³²³	12579
		~256	4640	ommunication	41229
		~128	374	and storage	346
slight		~256	644	overhead	596
Classic McEliece	e Round 4	~128	6 <mark>4</mark> 92	261120	128
		~256	13932	10449922	240

Signature stats

Algorithm	Status	Security	Private key (B)	Public key (B)	Signature (B)
ECC (ECDSA)	Pre-Quantum	~128	32	32	64
		~256	64	64	128
Dilithium	Winner	~128	2544	1312	2420
		~256	4880	2592	4595
Falcon	Winner	~128	1281	897	666
		~256	2305	1793	1280
SPHINCS+ (s)	Winner	~128	64	32	7856
		~256	128	64	29792
SPHINCS+ (f)	Winner	~128	64	32	17088
		~256	128	64	49856

Signature stats

Algorithm	Status	Security	Private key (B)	Public key Sigr	ature (B)
ECC (ECDSA)	Pre-Quantum	~128	32	larger keys &	64
		~256	64	signatures	28
Dilithium	Winner	~128	2544	31 8 11 acut C3 1312	2 <mark>4</mark> 20
		~256	4880	2592	4595
Falcon	Winner PQ	~128	1281	897	666
		dscape will	2305	1793	1280
SPHINCS+ (s)	Winne cha	ange when	64	Larger ³²	7856
		algorithms	128	ommunication	29792
SPHINCS+ (f)	Winner ent	er Round 4	64	and storage	17088
		~256	128	overhead	49856

Example: NIST Round 3 finalist Rainbow

Why hybrid systems?

- and Round 4 candidate SIKE were broken!
- Many recommend using a hybrid system

We **cannot fully trust** that the new PQC

•

- Combine PQC with ECC

schemes are secure

- ANSSI (France) recommends it at least until 2030
- ECC will not go away for a long time!

Key take-aways

Systems designed today should have the ability to support PQC in the future.

Co-existence of classical and PQC algorithms. Reprogrammability of FPGA is an advantage. Fixed solutions (ASIC, TPM) lack crypto agility. 2-3 years from algorithms to standards. Quantum cryptography for niche applications.

lagic, vectoridara, width I downlo, 0), die logic, last : in Atd. logic, bytes, van. ager, digest, out std logic, vector(data, width-Ldownto 0).); and antity sip3034h;

downto-0); din valid - in std. logic; last - in std. logic; bytes valid - in std. logic, vector(3 downto 0); request

tale weath through are find

as seven memorie wid all lineares

togic: digest - dut std_logic_vector(data_width-1 downto 0)); and antity xip3034h; - i

the Mark and Inquiciting all

vectoridata witth's downto 01 / otde entity vie 2034h.

territorial definitions around and definition and de

ectoristata width I downto-01 din valid

etr value

Thank you!

as ass ready, data out

www.xiphera.com info@xiphera.com kimmo.jarvinen@xiphera.com